skip to main content


Search for: All records

Creators/Authors contains: "Nikola, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We report the discovery of two companion sources to a strongly lensed galaxy SPT0418-47 (“ring”) at redshift 4.225, targeted by the JWST Early Release Science program. We confirm that these sources are at a similar redshift to the ring based on Hαdetected in the NIRSpec spectrum and [Cii]λ158μm line from the Atacama Large Millimeter/submillimeter Array (ALMA). Using multiple spectral lines detected in JWST/NIRSpec, the rest-frame optical to infrared images from NIRCam and MIRI and far-infrared dust continuum detected by ALMA, we argue that the newly discovered sources are actually lensed images of the same companion galaxy SPT0418-SE, hereafter referred to “SE,” located within 5 kpc in the source plane of the ring. The star formation rate derived using [Cii] and the dust continuum puts a lower limit of 17Myr−1, while the SFRHαis estimated to be >2 times lower, thereby confirming that SE is a dust-obscured star-forming galaxy. Analysis using optical strong line diagnostics suggests that SE has near-solar elemental abundance, while the ring appears to have supersolar metallicity O/H and N/O. We attempt to reconcile the high metallicity in this system by invoking early onset of star formation with continuous high star-forming efficiency or by suggesting that optical strong line diagnostics need revision at high redshift. We suggest that SPT0418-47 resides in a massive dark-matter halo with yet-to-be-discovered neighbors. This work highlights the importance of joint analysis of JWST and ALMA data for a deep and complete picture of the early universe.

     
    more » « less
  2. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    We present recent developments on Cornell’s 2nd generation z (redshift) and Early Universe Spectrometer (ZEUS-2). ZEUS-2 is a long-slit echelle-grating spectrometer, originally implemented to deliver R∼1000 spectroscopy in the 350-, and 450-micron telluric windows using NIST Transition-Edge Sensed (TES) bolometer arrays. We have expanded its capabilities to also cover the 200-micron window, and present first-light data for the new array from our 2019 observing campaign on the Atacama Pathfinder EXperiment (APEX) telescope. We also discuss the various enhancements we have implemented to improve observing efficiency and noise performance, including identifying and mitigating vibrations in hardware and improving the stability and robustness of the control software for the detector temperature. Furthermore, we have implemented several software routines to interface with the telescope control systems. These improvements, demonstrated during our recent observing campaign in Nov-Dec 2021, resulted in enhanced reliability and ease of operation, as well as increased sensitivity. A data-driven software pipeline, leveraging data from all 300 detectors on the array to remove common-mode noise, was implemented, and noise performance was further improved by robustly detecting unstable detectors and disabling them during observations. 
    more » « less
  3. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    An often unglamorous, yet critical, part of most millimeter/submillimeter astronomical instruments is cryogenic temperature monitoring and control. Depending on the operating wavelength of the instrument and detector technology, this could be stable temperatures in the Kelvin range for millimeter heterodyne systems to 100 mK temperatures at sub-micro-Kelvin stability as for many submillimeter bolometer systems. Here we describe a project of the HARDWARE.astronomy initiative to build a low-cost open-source temperature monitoring and control system. The HARDWARE.astronomy Housekeeping Box, or H.aHk Box (pronounced “hack box”) is developed primarily by undergraduates and employs existing open-source devices (e.g Arduino, Raspberry Pi) to reduce costs while also limiting the complexity of the development. The H.aHk Box features a chassis with a control computer and ten expansion slots that can be filled with a variety of expansion cards. These cards include initially an AC 4-wire temperature monitor and PID control cards. Future work will develop 2-wire temperature monitors, stepper motor controller, and high-power supply. The base-system will also be able to interface with other house-keeping systems over USB, serial port and ethernet. The first deployment of the H.aHk Box will be for the ZEUS-2 submillimeter grating spectrometer. All designs, firmware, software and parts list will be published online allowing for other projects to adopt the system and create custom expansion cards as needed. Here we describe the design (including mechanical, electrical, firmware, and software components) and initial performance of the H.aHk Box system with initial AC/DC 4-wire and PID cards. 
    more » « less
  4. Abstract

    We present a detailed overview of the science goals and predictions for the Prime-Cam direct-detection camera–spectrometer being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6 m aperture submillimeter telescope being built (first light in late 2023) by an international consortium of institutions led by Cornell University and sited at more than 5600 m on Cerro Chajnantor in northern Chile. Prime-Cam is one of two instruments planned for FYST and will provide unprecedented spectroscopic and broadband measurement capabilities to address important astrophysical questions ranging from Big Bang cosmology through reionization and the formation of the first galaxies to star formation within our own Milky Way. Prime-Cam on the FYST will have a mapping speed that is over 10 times greater than existing and near-term facilities for high-redshift science and broadband polarimetric imaging at frequencies above 300 GHz. We describe details of the science program enabled by this system and our preliminary survey strategies.

     
    more » « less